Peter Higgs, Nobel Prize-winning physicist, 1929-2024 - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
FT商学院
Peter Higgs, Nobel Prize-winning physicist, 1929-2024

His pioneering theoretical work helped us understand what made the universe possible

The Nobel Prize-winning scientist Peter Higgs’s signature achievement was to solve a conundrum about what made the physical universe possible. Sixty years on, the pioneering theoretical work he and his peers did is driving ever-deeper investigations into the past and future of the cosmos.

Higgs’s ideas have had “a profound impact on our understanding of the universe, of matter and of mass”, said Alan Barr, professor of particle physics at Oxford university.

Higgs, who died on Monday aged 94, had an unusual scientific life of three acts. The startling insights of his mid-thirties were followed by a lower-key remainder of his career in academia, until his retirement in 1996.

Then, in 2012, came confirmation of the existence of the particle known as the Higgs boson and its associated force field — just as Higgs had predicted. Now Cern, the European Organization for Nuclear Research, is considering a €16bn expansion project in part to investigate the properties of this cosmically consequential discovery.

“The concept of the Higgs field and the Higgs boson is unique in particle physics,” said Mark Thomson, professor of particle physics at Cambridge university and the UK candidate to be Cern’s next director-general. “It is unlike anything else we have seen.”

Higgs was born in Newcastle upon Tyne in 1929, and schooled in the West Midlands, Bristol and London. In Bristol he attended Cotham Grammar School, where stories of a former pupil named Paul Dirac inspired him. Dirac was a founding theoretician of quantum mechanics who had jointly won the Nobel Prize in physics in 1933.

An older man stands in a hall with people holding cameras and TV cameras

Higgs at Edinburgh university in 2013 after being awarded the Nobel Prize in Physics

Jeff J Mitchell/Getty Images
A man in a suit stands in front of a photograph of the Large Hadron Collider at the Science Museum

Higgs stands in front of a photograph of the Large Hadron Collider at the Science Museum in London in 2013

Peter MacDiarmid/Getty Images

“I was curious about what he had done because his name appeared frequently on the roll call of the achievements of former pupils,” Higgs later recalled. “And that led me to read about atomic physics and quantum theory before I was ever taught them.”

Higgs graduated with a physics PhD from King’s College London and spent most of his academic career at Edinburgh university. At Edinburgh, he turned his mind to a fundamental puzzle. He worked in the strange realm of the subatomic, where the classical Newtonian physics of falling apples breaks down.

Models of the universe of subatomic particles struggled to account for why some of them must have mass — that is, they are made of matter. This was a problem: if none of them had mass, they could not combine to create stars, planets or life forms that did.

The answer, Higgs concluded, lay in a force field that permeated the universe. He thought an as-yet unidentified particle carried a force from this field that interacted with other particles to give them mass: in a sense, it defined them.

Higgs later used the simplified analogy of a snowfield — the force field — being traversed by people — other particles — wearing skis, snowshoes and normal boots. They move at differing speeds through the area, governed by how they interact with the snow.

One of Higgs’s early papers was rejected by a scientific journal. This perhaps reflected what the researcher saw as a perception among some Edinburgh colleagues that his ideas were, as he said in an interview, “a bit eccentric, maybe cranky”.

He refined his concepts — crucially predicting the Higgs boson — while other theoreticians produced their own groundbreaking work at the same time. When he won the 2013 Nobel Prize for this work, he shared it with the Belgian theoretical physicist François Englert.

The physicist famously went out for lunch on the day of the Nobel announcement to avoid media attention. He was generally a retiring character who once said the exposure from the award ruined his life.

Higgs’s theoretical work after his breakthrough perhaps inevitably failed to touch the earlier heights, as the technicalities of his discipline developed without him. He later spoke about a period of depression when his marriage broke down in the 1970s. He talked, too, about friction in his relationship with his university over his union activities. He thought a main reason Edinburgh retained him was the possibility he would one day win a Nobel Prize.

That day duly came, at the age of 84 — confirming the importance of his work to our scientific exploration of the universe.

It showed that the cosmos was “filled with a weird essence called the Higgs field,” noted Frank Close, an emeritus professor of theoretical physics at Oxford university and author of a book about Higgs’s life and work.

“We need it like fish need water,” Close said of the extraordinary concept that Higgs envisioned. “Without it, nothing we know would exist.”

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

这次美国大选对美国企业意味着什么?

大选结果将对能源、汽车和制药等领域的企业产生重大影响。

德国的商业模式失败了吗?

德国三大主要产业同时陷入低迷,经济也停滞不前。政客们终于清醒过来了吗?

Lex专栏:马斯克利用美国大选出风头

这位亿万富翁的名字没有出现在选票上,但他已利用美国大选吸引了大家的注意力。

暴力是怎样逐渐成为美国大选主题的?

在充斥着“前所未有”的极端言论的竞选季之后,选民们笼罩在紧张氛围中。

英国新税制或使其成为新的“避税天堂”

顾问警告说,英国政府取代非居籍计划的建议将吸引那些寻求短期免税期的人士

Lex专栏:高端电动汽车有望助力小米登上领奖台

小米的新车型可能不是每个人的梦想之车,但这家公司在竞争中处于有利地位。
设置字号×
最小
较小
默认
较大
最大
分享×